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Abstract
Traditional process creation interfaces, such as fork and
spawn, are complex to use, limited in power, and difficult
to abstract over. We develop a new process creation interface
for Linux which allows a program to create a child process in
a non-running state and initialize the new process by operat-
ing on it from the outside. This method of process creation
results in more comprehensible programs, has better error
handling, is comparably efficient, and is more amenable to
abstraction. Our implementation is immediately deployable
without kernel modifications on any recent Linux kernel ver-
sion.

1 Introduction

The most well-known process creation interface on Linux is
fork. When a parent process creates a child process through
fork or other fork-style interfaces, both processes execute
concurrently, and the child process typically inherits all but a
few attributes from the parent process [43]. The child process
can call arbitrary system calls to mutate the new process until
it reaches the desired state, typically ultimately calling exec.

A user of fork must think carefully about the attributes
of the process in which fork is called. fork can have poor
performance when called in processes with many memory
mappings [7]. This can be mitigated to some degree by us-
ing vfork or CLONE_VM, but these techniques are difficult to
use correctly [17]. Multi-threaded processes can encounter
deadlocks and other issues if they call fork [7] [34] [18].
Some thread libraries provide partial mitigations for issues
caused by fork, but these must be enabled and used properly
by users [45].

Since the child process runs concurrently with the parent
process, communicating events in the child back to the parent
requires some form of IPC [18]. Even the basic interface of
fork — one function call which returns twice — is unusual;
in other settings, such functions are considered to be complex,
advanced topics. [28] [50].

Closely related to fork are process creation interfaces
where the new process is launched running a function of
the caller’s choice, which can then call arbitrary system calls
to mutate the new process [40] [6]. Such interfaces have simi-
lar issues as fork, and we class them together as “fork-style”
interfaces.

Conversely, in a spawn-style interface, most details about
the new process are provided up front as arguments to
some function which creates the new process all at once.
posix_spawn [23] is a typical example of this style [61] [15].
Some other details, such as security context, are inherited
from the parent process [34] [15]. Spawn-style APIs can be
called from any parent process without concerns about mem-
ory usage or multi-threading, when used correctly [18] [7].

Unlike with fork, normal system calls cannot be used to
customize a process started with a spawn-style interface [24]
[20]. Spawn-style interfaces therefore often lack support for
some features, and they also require learning a new inter-
face distinct from the existing system call API [4] [34]. Also,
spawn-style interfaces, by their nature as a single call, don’t
allow programs to branch on the results of individual modifi-
cations to the new process, and have worse error reporting for
such modifications [23] [18].

Table 1 summarizes the differences between fork-style and
spawn-style. Each has its own advantages and disadvantages.

A few operating systems — KeyKOS [10] and seL4 [26],
among others [16] [39] [1] — use another style of process
creation. We use the new term “direct-style” to refer to this,
since we know of no pre-existing generic term for this style
of process creation.

In direct-style, a process is created by its parent in a non-
running state, then supplied with various resources, and then
started running once it is fully set up. In operating systems
with true direct-style process creation, the syscalls that can
mutate a process take explicit arguments to indicate the pro-
cess on which they should operate [10] [26]. In this way, the
same syscalls that can mutate a process while it is running
are called by the parent process to mutate the process while it
is being set up.
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fork-style spawn-style direct-style
Parent process requirements 7 :Single thread, small memory 3:None 3:None
Programming model 7 :Complex (returns twice) 3:Simple (single call) 3:Simple (imperative)
Maximally powerful 3:Yes, can call any syscall 7 :No, limited interface 3:Yes, can call any syscall
Reporting of results 7 :Requires IPC 7 :Not fine-grained 3:From individual child syscalls
Non-inherited attributes Mutated by code in child Set by arguments Mutated by code in parent

Table 1: Features of fork-style vs spawn-style vs direct-style

Listing 1: Create new process, change CWD, and exec

child = local.clone()
child.chdir("/dev")
child.execv("/bin/cat", ["cat", "./null"])

To perform direct-style process creation on Linux, we need
an API where we explicitly specify in which process we want
to make a syscall. This differs from the normal mode of oper-
ation on Linux, where programs making syscalls implicitly
operate on the current process.

Our main contribution in this paper is such an API, in
the form of the rsyscall library. rsyscall is a language-
specific, object-capability-model, low-abstraction library for
the Linux system call interface, bypassing libc [52] [51]. The
rsyscall project is currently focused on supporting Python,
but the library can be ported to other languages. The ex-
amples we show in this paper will be in Python, but gen-
eralize easily. rsyscall is open source and available from
https://github.com/catern/rsyscall.

Unlike typical C libraries such as glibc or musl, the
rsyscall library is organized based on the object-capability
model [52] [51]. The capability to make syscalls in any spe-
cific process is reified as a language object. If the capability
to make syscalls in a specific process is not passed (in some
way) to a function, then that function cannot make syscalls in
that process.

Due to this design, an rsyscall program can make use
of multiple processes at once, by manipulating capabilities
for multiple processes. The relevant two types of capabilities
for this paper are the initial capability for the “local” process,
and capabilities for child processes. The “local” process is
the one which hosts the runtime for the running program,
and in which a legacy libc would implicitly make syscalls.
Every rsyscall program starts with the capability for the
“local” process and uses it to bootstrap capabilities for other
processes.

Listing 1 shows a Python program using rsyscall. We
create a new child process using direct-style clone in the
local process local. Here, local.clone() does not create
another task running the same user program, as with the usual
clone system call, but instead returns a capability through
which we can control the new child process. We can then call

various syscalls in the child process to mutate it until it reachs
the desired state. In this example, we call chdir in the child
process to change its working directory, then call execv in the
child to execute a new executable. Calling execv consumes
the capability, releasing the process from our control; later
use of this child process capability will fail with an exception.
The child process can now be monitored using normal Linux
child monitoring syscalls, such as waitid.

These child process capabilities are created and managed
in userspace, by launching new processes running a syscall
server, which receives syscall requests, performs the syscall,
and returns the response. No kernel modifications are required,
and rsyscall is immediately deployable on recent Linux
kernels. We discuss the implementation in depth in section 3,
and examine several difficult process-creation details.

System calls called in a child process through rsyscall
behave identically to system calls called implicitly in the
current process through libc. A system call returning an error
is reported in the typical way for system calls in Python: An
exception is thrown at the point of the call. User code can
branch as normal on the results of system calls, and implement
fallbacks or other error handling logic.

Since we can call any syscall, we can access any feature
available in Linux; we are therefore at least as powerful as
fork. As we’ll show in section 2, we can in fact use Linux
features in ways that are impractical with the usual fork-style
or spawn-style interfaces.

Direct-style clone has acceptable performance cost, and
can outperform fork in some cases. Like a spawn-style in-
terface, we can call clone without worse performance in the
presence of large memory usage, and without the possibility
of bugs in the presence of multi-threading. The performance
overhead of creating processes with direct-style clone is com-
parable to the performance cost of creating processes while
inside a Linux namespace. At Two Sigma, we’ve used direct-
style process creation to implement a library for distributed
system deployment. We evaluate in further detail in section 4.

In summary, this paper makes the following contributions:
• We coin the term “direct-style process creation” to refer

to a previously-unnamed style of process creation which
is present on several operating systems.

• We built rsyscall, a library for the Linux system call
interface following the object-capability model.

• As part of rsyscall, we built the first implementation
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of direct-style process creation on a Unix-like kernel.
rsyscall is open source and available from
https://github.com/catern/rsyscall.

2 Examples

In this section, we’ll demonstrate direct-style process creation
by using several sophisticated features of Linux processes.
For concision, we assume that we are running with sufficient
privileges, but these examples can all be run without privileges
with appropriate use of CLONE_NEWUSER [33] [9].

In these examples and in this paper, a single program with
a single flow of control is operating across multiple processes.
We’ll always describe operations from the perspective of this
single synchronous program, never from the perspective of
an individual parent or child process.

These examples are not novel, as such, as they use only
conventional Linux system calls; but implementing them with
fork or posix_spawn requires substantially more code, or
even a complete change in implementation approach as in
section 2.6. We demonstrate this by comparison to fork-style
implementations of these examples in section 4.1.

Several of these examples can be implemented by configur-
ing and invoking existing software; such software effectively
provides a specialized spawn-style interface. But such tools
are often inflexible. For example, a shell allows the creation
of pipelines and container systems like Docker allow sand-
boxing, but the two are difficult to combine [53].

With improved process creation techniques, these features
can be used directly by programmers instead of by configur-
ing stand-alone software. In this way, individual real-world
applications can pick and choose the features that are useful
for them, as we describe in section 4.3.

2.1 Abstraction through FD passing
In Linux (and Unix in general), a program can pass file de-
scriptors (FDs) from the parent process to a child process
by using file descriptor inheritance [34]. When a process is
created, all open file descriptors are copied from the parent
process to the child process. The child process can then make
independent use of the file descriptors. We’ll discuss this
important feature further in section 3.3.1.

Most resources in Linux are managed through file descrip-
tors, so this allows the parent process to pass a variety of
resources to the child process, such as files, network connec-
tions, pipes, or other resources [8]. Since the resource is cre-
ated outside the child process and passed down as an opqaue
file descriptor, the precise details and type of the resource
are not available to the child. This is a form of abstraction,
and so we know “for free” [67] that the program running in
the child process will not rely on the details of how the file
descriptor was created, such as the filename that we opened
or the hostname to which we connected.

Listing 2: Passing down FDs

db_fd = local.open("/var/db/database.db", O_RDWR)
child = local.clone()
child_fd = child.inherit_fd(db_fd)
child_fd.fcntl(F_SETFD, 0)
child.execv("/bin/fooserver",
["fooserver", "--database-fd", str(int(child_fd))])

Listing 3: Creating a concurrent processing pipeline

def argfd(child, fd):
child_fd = child.inherit_fd(fd)
child_fd.fcntl(F_SETFD, 0) # unset CLOEXEC
return str(int(child_fd))

audio_pipe = local.pipe()
video_pipe = local.pipe()
source = local.clone()
source.execv(’/bin/source’, [’source’,
’--audio-out’, argfd(source, audio_pipe.write),
’--video-out’, argfd(source, video_pipe.write)])

video_sink = local.clone()
video_sink.execv(’/bin/video_sink’, [’video_sink’,
’--video-in’, argfd(video_sink, video_pipe.read)])

audio_sink = local.clone()
audio_sink.execv(’/bin/audio_sink’, [’audio_sink’,
’--audio-in’, argfd(audio_sink, audio_pipe.read)])

In Listing 2, we first open a file with read-write permission
in the local process. Then we create a child process, which
inherits all file descriptors from its parent. We indicate that
we want to operate on the child’s inherited copy of the file
descriptor with child.inherit_fd. inherit_fd performs
no system calls, it just updates bookkeeping to return a new
handle for the inherited file descriptor; we’ll discuss it in
more depth in section 3.3.1. Then we disable CLOEXEC on the
child’s file descriptor, which on Linux we can do by clearing
the FD flags with fcntl(fd, F_SETFD, 0); this ensures
that the file descriptor will be usable by the new program
after we call exec [42]. Finally, we execute a new program
in the child process, passing the file descriptor number as
an argument. The new program will be able to use the file
descriptor we opened through that file descriptor number.

2.2 Non-shared-memory concurrency
Processes run concurrently, which enables modularity and
allows exploiting the parallelism of the underlying hardware.
Since processes don’t share memory, they can provide a
less complex parallel programming environment than shared-
memory thread-based approaches [58].

In listing 3, we execute a few programs concurrently, con-
nected by pipes. The source program generates two outputs,
which go to video_sink and audio_sink. We first create

3



Listing 4: Overriding absolute path using a mount namespace

child = local.clone(CLONE_NEWNS)
child.mount("/home/foo/custom_foo.conf",
"/etc/foo.conf", "", MS_BIND, "")

child.execv(’/bin/fooserver’, [’fooserver’])

two pipes in the local process, then inherit them down to sev-
eral child processes using a helper function, argfd, which
uses inherit_fd and fcntl as described in section 2.1. We
call execv in each child process to run the desired programs,
passing some file descriptors as arguments to each. The whole
system of connected processes then runs concurrently.

2.3 Customization without explicit support
While ideally all resources would be passed by file descriptor,
traditional Unix has a number of resources that are global,
such as the process identifier space or the mount table, which
cannot be changed on a per-process basis [68].

In Linux, many global resources have been made process-
local through the namespaces system [31]. Like other process-
local resources such as the current working directory, names-
paces are typically set up at process creation time.

One key use of namespaces is to implement large-scale con-
tainer systems such as Docker [31]. However, this is far from
the only use. With an adaquate process creation primitive,
namespaces can be used easily on a much smaller scale.

Namespaces, like all process-local resources, can be used
to customize a program’s behavior in ways that were not antic-
ipated at development time by customizing the environment
the process runs in [59]. Other system calls such as chdir
and chroot can also be used for this, but namespaces allow
new ways of customization [30].

One classic form of customization is overriding files at
paths that were hardcoded into a program, without changing
those files for the rest of the system. In listing 4, we create
a new child process as normal, but for the first time, pass an
argument to clone.
CLONE_NEWNS causes clone to create the process in a

new mount namespace, which allows us to manipulate the
filesystem tree in a way that only this process will see, us-
ing the mount system call [30] [40]. We call mount, passing
MS_BIND, to make the file /home/foo/custom_foo.conf
appear at the path /etc/foo.conf; this is known as a
bind mount [44]. Then we execute some program, which,
when it opens /etc/foo.conf, will see the contents of our
custom_foo.conf.

2.4 Sandboxing
At process creation time, we can not only pass resources
and customize the process’s environment, we can also deny
the process access to resources that it otherwise receives by

Listing 5: Unmount all and run executable via fexec

child = local.clone(CLONE_NEWNS)
exec_fd = child.open("/bin/foo_static", O_RDONLY)
db_fd = child.open("/var/db/database.db", O_RDWR)
child.umount("/", MNT_DETACH)
db_fd.fcntl(F_SETFD, 0)
child.fexec(exec,
["foo_static", "--database-fd", str(int(db_fd))])

default. This is a key part of creating a secure sandbox for
potentially malicious code [47] [54] [70].

In listing 5 we create a new child process, again in a new
mount namespace using CLONE_NEWNS. Since we won’t be
able to open files or use execv in the child process after the
next step, we open several files in the child up-front. Then
we use umount, passing MNT.DETACH to perform a recursive
unmount of the entire filesystem tree, removing it all from the
view of this process.

Then, as in listing 2, we prepare to pass db_fd to the new
program by unsetting CLOEXC. Unlike in listing 2, we don’t
need to call inherit_fd, since the file descriptor was opened
directly from the child process. We then run the executable
we opened earlier using fexec, which allows executing a file
descriptor, and pass the database file descriptor number as an
argument [41]. Note that this executable must be statically
linked, or it wouldn’t work in an empty filesystem namespace
with no libraries to dynamically link against.

By removing the filesystem tree from the view of this pro-
cess, we can run this executable with greater confidence that
it won’t be able to tamper with the rest of the system. A sand-
box which is truly robust against malicious or compromised
programs requires additional steps, but this is a substantial
start [54] [70]. Such a technique can also be used when a full
sandbox is not relevant, to ease reasoning about the behavior
of the program being run and protect against bugs.

Even if the process needs additional resources, those can
be explicitly passed down through file descriptor passing, as
we do here with the database file descriptor. This allows us to
approximate capability-based security [68].

2.5 Nested clone and pid namespaces
Process-local resources can also be used to control the lifetime
of resources used by that process. Some Linux resources are
not automatically cleaned up on process exit; a poorly coded
program may allocate global resources without ensuring that
they will be cleaned up later, leaving behind unused garbage
on the system when it exits.

One resource which is not automatically cleaned up is pro-
cesses themselves. If we run a program which itself spawns
subprocesses, those subprocesses may unintentionally leak,
and be left running on the system even after the original pro-
gram has stopped [11].
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Listing 6: Nested clone and pid namespace

init = local.clone(CLONE_NEWPID)
grandchild = init.clone()
grandchild.execv(’/bin/fooserver’, [’fooserver’])

We can use a pid namespace to solve this issue. The lifetime
of all processes in a pid namespace is tied to the first process
created in it, the init process. When the init process dies, all
other processes in the pid namespace are destroyed [32].

In listing 6, we create a child process which we’ll name
init, passing CLONE_NEWPID to create it in a new pid names-
pace [40].

To create another process in the pid namespace, we clone
again, this time from init. This is the first example in which
we’ve cloned from one of our child processes; as normal, this
gives us a capability for a new process, a grandchild, which
can be used exactly like a direct child process. We exec in
the grandchild, and we can monitor the grandchild process
from init, just as we would monitor init from its parent
process.

The first process in a pid namespace (usually referred to as
init) has some special powers and responsibilities [32]. We
can handle these responsibilities ourselves directly from our
program, or we can continue on by execing an init daemon
in init to handle it for us [57] [69].

In either case, when init dies, the pid namespace will be
destroyed, and grandchild will be cleaned up.

2.6 Shared file descriptor tables

For our final example, we’ll create a child process which
shares its file descriptor table with the parent process. This can
be useful for a variety of purposes, such as accessing resources
in other namespaces, or accessing multiple namespaces at
once.

Our example will use the Filesystem in Userspace (FUSE)
Linux subsystem. FUSE [29] allows a filesystem to be imple-
mented with a userspace program. Many interesting filesys-
tems [37] [22] [27] have been implemented using FUSE,
representing a variety of resources as files.

For improved modularity, we might want to mount and use
a FUSE filesystem in our program, in a way that no other pro-
cess can see it, without entering a new namespace ourselves.
We can do this by creating a child process that shares its file
descriptor table with the parent process.

In listing 7, we first create a child process ns_child in a
new mount namespace with CLONE_NEWNS, and this time also
pass CLONE_FILES, which causes the file descriptor table to
be shared between the parent process and the child process
[40]. We create another child from ns_child and use it to
exec a FUSE filesystem, which will appear only in the mount
namespace of ns_child and its descendents. Then we can

Listing 7: Shared file descriptor tables

ns_child = local.clone(CLONE_FILES|CLONE_NEWNS)
server_child = ns_child.clone()
server_child.execve(’/bin/foofs’,
[’foofs’, "--mount-at", "/"])

fd = ns_child.open("/foo/bar", O_RDONLY)
parent_fd = local.use_fd(fd)

open FUSE files in ns_child and use those files in local,
through the shared file descriptor table. We call use_fd which,
like inherit_fd, updates bookkeeping to create a new handle
for the file descriptor existing in the shared fd table; we’ll
discuss use_fd in section 3.3.1.

File descriptor passing over a Unix domain socket can allow
similar behavior without sharing the file descriptor table, but
is substantially more complex [35]. Nevertheless, for fork-
style and spawn-style process creation, file descriptor passing
over a Unix domain socket is our only option to implement
this kind of sharing.

3 Implementation

In this section, we’ll give a brief overview of the implementa-
tion of rsyscall, and then focus on implementation issues
specific to process creation.
rsyscall can be conceptually divided in two parts: the

basic syscall primitive, and a language-specific library built
on top. The Python language-specific library has already been
demonstrated above. Such libraries only need to be able to call
syscalls and explicitly specify a process in some way; they
are, for the most part, agnostic to how the syscall primitive
is implemented. The syscall primitive takes a syscall number,
and some number of register-sized integer arguments, and
arranges to call that syscall in the specified process, returning
the result as a single register-sized integer.

When making a syscall in the local process, the syscall is
performed normally, directly on the local thread, as one might
expect.

When making a syscall in another process, rsyscall’s
default userspace cross-process syscall primitive sends the
syscall request to a userspace “syscall server” running in the
target process, which performs the syscall and sends the result
back. Communication to the syscall server happens over file
descriptors, typically a pair of pipes. The syscall server runs
on the main and only thread of the target process, and is the
only userspace code running in an rsyscall-controlled child
process; when not executing a syscall or writing out the result,
an rsyscall-controlled child process spends all its time blocked
in read, waiting for new syscall requests.

We use file descriptors for transport of data rather than
shared memory to support straightforward integration with
existing event loops; this is a key design constraint. While
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we only show synchronous programs in this paper, calling
a syscall in another process may block at any time, and a
complex program will likely have other requests to service
concurrently. Even a relatively simple program may want to
monitor multiple child processes at a time. To support this,
our implementation fully supports asynchronous usage with
a user-provided event loop, including Python async/await
coroutine support [63].

We have chosen to implement our cross-process syscall
primitive in userspace, rather than immediately implementing
this in the kernel, to aid deployability and to allow fast iter-
ation while developing userspace code using these features.
In the past, attempts to upstream kernel support for novel
features without extensive userspace usage have had a poor
reception in the Linux kernel community [13] [64]. We be-
lieve proving viability in userspace first will be better in the
long term.
ptrace [46] already provides an in-kernel way to perform

arbitrary actions on a target process, including system calls,
but is not suitable for us. As we discuss in section 5.2, a
number of systems, such as gdb and strace, use ptrace
to implement debuggers. But multiple processes cannot use
ptrace on a single target process at the same time; thus, if we
used ptrace to implement rsyscall, such debugging tools
would not work on rsyscall-controlled processes, which is
an unacceptable limitation for a general-purpose utility.

Many syscalls either take or return pointers to memory,
and require the caller to read or write that memory to provide
arguments or receive results. Therefore, an rsyscall library
needs a way to access memory in the target process.

The most simple way to access memory is for the local
process to be in the same address space as the target process.
This is the case most of the time; we pass CLONE_VM to clone
by default in the rsyscall wrapper for clone.

Sometimes, the target process may be in another address
space; for example, if the target process is at a different privi-
lege level, we will want it to be in a different address space
for security reasons [17]. There are a number of available
techniques in that scenario; we choose to copy memory over a
pair of pipes, again using file descriptors for the sake of easy
event loop integration.

3.1 clone

Now that we’ve established the basic implementation details
of rsyscall, we’ll consider specific issues related to process
creation and initialization.

Besides clone, vfork and fork also create processes, but
they are not suitable for flexible direct-style process creation.
vfork [49] suspends execution of the parent process while
waiting for the child process to exit or call execve, which is
immediately unsuitable. fork lacks many features which are
restricted to clone. For example, with fork, we could not
create child processes which share the parent’s address space,

which would complicate memory access.
The raw clone system call creates a new process which

immediately starts executing at the next instruction after the
syscall instruction, in parallel with the parent process, with
its registers in generally the same state as the parent process.
clone lets us change the stack for the new process. We can

use this to make the new process call an arbitrary function, by
storing its address on the new stack. Further arguments can
also be passed on the stack, with the aid of a trampoline to
match C calling conventions if necessary.

We use this to create processes running the syscall server.
After this, the parent process can begin to call system calls in
the child process. Most system calls work as normal; the new
child process can be modified freely through chdir, dup2,
and other system calls. From the system calls related to pro-
cess creation, only execve needs substantial further attention.

3.2 exec

execve is unusual and requires careful design, because when
it is successful, it does not return. We need a way to determine
if execve is successful; naively waiting for a response to the
syscall request may leave us waiting forever.

There is a traditional technique used with fork to detect a
successful execve using a pipe, which unfortunately won’t
work for us. With this technique, the parent process creates a
pipe before forking, ensures both ends are marked CLOEXEC,
performs the fork, closes the write end of the pipe, and reads
the read end of the pipe. The child process either successfully
calls execve or exits; either way, the last copy of the write
end of the pipe will be closed, which causes the read in the
parent process to return EOF. The parent can then check that
the child process hasn’t exited; if the child hasn’t exited, then
it must have successfully called exec.

This trick works with fork, but it’s not general enough to
work with clone. Child processes can be created with the
CLONE_FILES flag passed to clone, which causes the parent
process and child process to share a single fd table; we showed
an example of this in section 2.6. This means that when the
parent process closes the write end of the pipe, it will also be
closed in the child process, and the read end of the pipe will
immediately return EOF, before the child has called execve
or exited.

Fortunately, there is an alternative solution, which
does work with CLONE_FILES. clone has an argument,
ctid, which specifies a memory address [40]. If the
CLONE_CHILD_CLEARTID flag is set, then when the child exits
or successfully calls exec, the kernel will set ctid to zero
and then, crucially, perform a futex wakeup on it.

Futexes are usually used for the implementation of
userspace shared-memory synchronization constructs [25],
but the relevant detail for us here is that we can wait on an
address until a futex wakeup is performed on that address.
This means we can wait on ctid until the futex wakeup is
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performed, and in this way receive a notification when the
child process has exited or successfully called exec.

A process can only wait on one futex at a time; to monitor
multiple futexes from a single event loop, we need to create
a dedicated child process for each futex we want to wait on,
and have this child process exit when the futex has a wakeup.
We can then monitor these child processes from an event loop
using standard techniques [48] [14].

So, we pass ctid whenever we call clone, and set up a
process to wait on that futex. Then, when we call any syscall,
we wait for either the syscall to return an error or the futex
process to exit, whichever comes first. For other syscalls, ei-
ther result will indicate that the syscall fails, but for execve, if
the futex process exits, without the child process itself exiting,
then we know that the child has successfully completed the
execve call.

If the futex process and child process both exit, it’s ambigu-
ous whether the child process successfully called execve;
this ambiguity is unfortunate, but it is also present in the pipe-
based approach. This ambiguous situation will only happen if
the child receives a fatal signal while calling execve, which
we believe will be rare.

Some other Unix-like systems natively provide the abil-
ity to wait for a child’s execve [36]; our implementation
would be simplified, and the ambiguity eliminated, if we had
this ability on Linux. One approach would be to add a new
clone flag to opt-in to receiving WEXECED events through
waitid. A new waitid flag alone is not sufficient, since, to
integrate this feature into an event loop, it’s necessary to re-
ceive SIGCHLD signals or readability notifications on a pidfd
when the WEXECED event happens.

3.3 Handling file descriptors
In Linux, there are many types of resources maintained inside
the kernel which are referred to by identifiers which are valid
only within a certain context. For example, file descriptors are
referred to by file descriptor numbers which are valid only in
a certain file descriptor table; memory and memory mappings
are referred to by memory addresses which are valid only
in a certain address space; the same pattern is followed for
a number of other resources [34]. Each process has one file
descriptor table, one address space, and one of each of the
other contexts. Two or more processes can share individual
contexts; for example, two processes might share an address
space, but not a file descriptor table.

The core issues here are the same for all such resources,
so we’ll focus on file descriptors. For concision and clarity,
we’ll abbreviate “file descriptor” as “FD” in this section.

A typical POSIX program operates within only one process,
and so only needs to concern itself with one of each kind of
context. To identify and operate on an FD, it can use just an
FD number, which is valid within the global implicit process’s
FD table. That’s sufficient to make syscalls involving that FD.

A program using rsyscall, however, operates in multiple
processes, and has to deal with resources across multiple
contexts. To identify an FD, it needs not just a FD number,
but also some kind of identifier for an FD table. To then
operate on that FD, it needs a capability for a process with
that FD table, so that it can make syscalls in that process.

To manage this, we add a new concept alongside FD, FD
number, and FD table: The FD handle. An FD handle is a pair
of an FD number and a process capability. This both precisely
identifies an FD, and allows operating on it. We say an FD
handle is associated with a process if that FD handle contains
that process capability.

All system calls which would otherwise return FD numbers
or take FD numbers as an argument, now instead return FD
handles or take FD handles as an argument. For convenience,
as shown in section 2 for fcntl, helper methods on the FD
handle object are provided for many system calls dealing with
a single FD; these methods simply call the corresponding
underlying system call using the process capability contained
in the FD handle.

In this way, we can work with FDs without the ambiguity
of dealing with raw FD numbers in a multi-process context.

3.3.1 File descriptor inheritance and table sharing

The picture is complicated by the need to support some FD
behaviors which implicitly cross between processes; specifi-
cally, FD inheritance and FD table sharing.

FD inheritance is a behavior exhibited by clone (without
CLONE_FILES) and by fork. When these system calls are
called, they create a new child process with a new FD table.
The new FD table contains copies of all the FDs existing in
the parent process’s FD table at the time of the system call, at
the same FD numbers. We show examples of this in sections
2.1 and 2.2.

FD table sharing occurs when clone with CLONE_FILES
is called; this creates a new child process that shares its FD
table with its parent. As a result, either process can operate
on any FD in the table, through the same FD numbers. We
show an example of this in section 2.6.

These behaviors are unusual in that they operate on all open
FDs at once. There are other ways to pass FDs between pro-
cesses, such as SCM_RIGHTS [35], but those interfaces operate
on individual FDs through explicit system call arguments and
return values. In those interfaces, one or more FDs are explic-
itly passed as arguments to a system call in one process, and
one or more FDs are returned from another system call in an-
other process. This differs from FD inheritance and FD table
sharing, which happen for all FDs, implicitly; these behavior
must be dealt with differently to be fully supported.
rsyscall supports both behaviors in the same way: by

allowing us to create new FD handles referring to the already-
open FDs created by FD inheritance or FD table sharing. By
creating new FD handles associated with new processes, we
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can call syscalls in those processes on those FDs.
rsyscall provides two functions inherit_fd (used in

listings 2 and 3) and use_fd (used in listing 7), which sup-
port FD inheritance and FD table sharing, respectively. Both
functions take as arguments a process capability A and an FD
handle F associated with some other process B, and return a
new FD handle associated with process A.

For inherit_fd, the returned handle has the same FD
number as F , and refers to the copy of F’s FD that was in-
herited at process creation time. inherit_fd will fail if B is
not A’s parent process, or if F was not open at the time A was
created.

For use_fd, the returned handle again has the same FD
number as F , and refers to the same FD as F , through the
shared FD table. use_fd will fail if A and B don’t share the
same FD table.
rsyscall’s support for these behaviors is intended to ex-

pose the native functionality of the Linux kernel, while still
being relatively straightforward to use. In this way, we hope
to ensure that direct-style process creation with rsyscall
supports everything that the underlying Linux system call
interface can support.

4 Evaluation

Our goal is a powerful approach to process creation that is
easy to use correctly. Performance of our implementation is
secondary, but the overhead of our implementation relative to
alternative approaches must be low.

We evaluate the degree to which we meet this goal by
answering the following questions:

• Does direct-style process creation on Linux allow for
simpler programs than the alternatives? We compare im-
plementations of similar functionality using both direct-
style and fork-style in 4.1, and find substantial benefits
for direct-style.

• Does our rsyscall-based direct-style process creation
interface have acceptable performance overhead relative
to the alternatives? We evaluate a number of microbench-
marks in 4.2, and find an acceptable level of overhead.

• Does direct-style process creation perform well in the
“real world”? We discuss our positive experience with
using direct-style process creation at Two Sigma in 4.3.

4.1 Ease of programming with direct-style

Does direct-style process creation on Linux allow for simpler
programs than the alternatives? To answer this, we compare
the direct-style examples shown in section 2 to programs with
the same behavior implemented in fork-style.

Most of the examples cannot be implemented with typical
Linux spawn-style interfaces such as posix_spawn, so we
compare only to fork-style.

Name Listing Direct-style Fork-style
basic 1 3 14

fds 2 6 16
pipe 3 17 49

mount 4 4 15
unmount 5 7 18

pidns 6 3 23
fuse 7 6 27

Table 2: Line counts with direct-style vs fork-style

Listing 8: Fork-style: Creating a new process, changing CWD,
and execing

pid = os.fork()
if pid == 0:

try:
os.chdir("/dev")
os.execv("/bin/cat", ["cat", "./null"])

except OSError as e:
ipc.send(e)
os.exit(1)

else:
result = ipc.recv()
if result.is_eof:

pass # success
elif result.is_exception:

raise result.exception

The line counts of the direct-style and fork-style implemen-
tations are listed in table 2. Direct-style consistently takes
under half the lines to express the same functionality.

Listing 8 shows one of our fork-style implementations,
corresponding to the direct-style implementation in listing 1.

In our fork-style implementations, we assume substantial
infrastructure is available to make fork-style simpler; despite
this, fork-style implementations are still significantly more
verbose than direct-style. We assume the existence of a robust
IPC system, with communication channels set up automati-
cally between the parent process and the child process, with
an already-defined protocol which can cover all errors from
all system calls.

The main source of additional code in fork-style implemen-
tations is reporting errors back to the main program using IPC.
This pattern is common in complex usage of fork [18] [19].
Many users of fork avoid complex IPC by encoding a subset
of the error information into the exit code of the child pro-
cess when an error is encountered during child setup. Such an
approach removes the need for IPC, but still requires similar
code for catching errors, encoding them into the exit code,
and detecting the error in the parent process by decoding the
exit code.

Direct-style does not require any extra work to report errors
from the child process; errors are reported just like any other
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system call. This is the main immediately visible simplifica-
tion of using direct-style process creation.

It is possible to build an abstracted wrapper for fork-style
process creation which abstracts away this error reporting
code. We have built several such wrappers [6], but have ul-
timately discarded them in favor of direct-style process cre-
ation.

We found that such wrappers, besides their complexity,
don’t provide any fundamental improvement for the issue of
communication between the concurrently executing child pro-
cess and parent process. As a result, while such wrappers can
remove some boilerplate in easy cases, they remain complex
in difficult cases like in sections 2.5 and 2.6, which rely on a
single program being able to coordinate multiple processes.
We believe only direct-style process creation is able to easily
express such functionality.

Direct-style also removes the need to be concerned about
the state of the calling process, though this simplification is
not immediately visible in a small example. The fork-style
implementations may break if there are multiple threads in
the calling process, and may be slow if the calling process
has large amounts of memory mapped, as we’ll see in sec-
tion 4.2. The direct-style implementations do not have these
limitations.

4.2 Microbenchmark results

4.2.1 Basic process creation

Figure 1: Python spawn-style vs direct-style performance
under varying memory usage

We evaluate a simple process creation workload: create a
child process, exec the true binary, and wait for it to exit. We
implement this using Python rsyscall direct-style clone,
the Python standard library’s subprocess.run (which is im-
plemented primarily with fork), fork from C, vfork from
C, and posix_spawn from C. We run on CPython 3.7.7, glibc
2.30, Linux 4.19.93, pinned to an isolated single core on an
Intel i9-9900K CPU at standard clock speed, with 60GB of
RAM. We vary the amount of anonymous memory mapped in

the parent process to demonstrate how each implementation
scales with memory usage. The results are summarized in
figure 1.

Our true baseline for performance is the Python standard
library’s subprocess.run; this takes an average of 1.4 mil-
liseconds at low memory usage, while rsyscall’s clone
takes an average of 2.2 milliseconds at any memory usage. As
expected, the fork-based implementations scale linearly with
memory usage, and the C implementations vastly outperform
the Python implementations. glibc’s posix_spawn takes an
average of 440 microseconds to start a process, and vfork
takes 400 microseconds, regardless of the memory usage of
the calling process,

We perform another microbenchmark to evaluate the over-
head of performing additional modifications of the child pro-
cess. We call getpid from Python in both the child process
and the parent process on the same benchmark setup. The
average time per getpid call is 3 microseconds when called
in the parent process without going through rsyscall, and
561 miroseconds when called through rsyscall in the child
process. The difference, 558 microseconds, is the amount of
overhead incurred for each child process setup system call
performed through rsyscall.

These slowdowns in process creation and modification are
substantial, but we found that this overhead is acceptable in
practice. Process creation in Python is already slow, taking
milliseconds of time, so it is not expected to be on the fast path.
In that context, rsyscall has a reasonable cost compared to
subprocess.run, and avoids the bad scaling of fork which
might be unexpected by the naive programmer.

Furthermore, as we’ll discuss in section 4.3, we’ve found
that the greater expressivity of direct-style provides for pro-
grams that are more efficient on a large scale, which makes
up for the performance cost in micro-benchmarks. We’ve also
found that, for many interesting applications, the performance
overhead of direct-style process creation (or Python, for that
matter) is dwarfed by the execution time of the native-code
programs we ultimately run.

As a result, though implementations in native code and in
the kernel would likely remove most of this overhead, we have
chosen to not invest effort into optimizing process creation at
this micro-level, to preserve implementation simplicity; such
optimization is reserved for future work.

4.2.2 Nested processes, CLONE flags

As demonstrated in sections 2.5 and 2.6, rsyscall supports
nested operation. That is, we can spawn a child from one of
our children; this can impact performance. clone also sup-
ports specifying a variety of flags to create new namespaces
when creating the child, which can also impact performance.

We’ve benchmarked process creation using the same sim-
ple process creation workload as section 4.2, performed
through rsyscall from a variety of parent processes: the lo-
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Figure 2: Time to create different processes from rsyscall,
by variety of parent process and child process

cal process, a child (created with clone()), a grandchild (cre-
ated with clone().clone()), or a child in a different names-
pace (created with clone(CLONE_NEWNS|CLONE_NEWPID)).
We’ve also specified different combinations of flags for the
child process being created in the benchmark. We don’t in-
clude the Python standard library in these benchmarks as
there’s no way to create nested child processes or specify
CLONE flags in the Python standard library. The results are in
figure 2.

Process creation in a child has a significant performance im-
pact, primarily because of the overhead of performing syscalls
in a child. Performance of process creation in a grandchild is
the same as in a child, because there is no additional overhead
for syscalls in a grandchild relative to a child. Benchmark-
ing getpid in a grandchild confirms that the average time
per getpid call is still 561 microseconds on our benchmark
setup.

The use of namespaces also has a significant impact, both
when the parent process is in a namespace, and when the
child process is created in a namespace. We perform the
benchmark with no clone flags, and with the common clone
flags CLONE_NEWNS and CLONE_NEWPID, first on their own
and then together. This benchmark essentially measures the
performance of the Linux namespaces system, not the work in
this paper, but it is illustrative to compare it to the performance
of rsyscall.

Note that the cost of creating a new child process from a par-
ent process that is already inside a namespace (the difference
between the clone() and clone(NS|PID) parent processes)
is around 2 milliseconds, comparable to the cost of running
with rsyscall. Note also that the overhead of creating a
new process inside a new namespace (the difference between

the clone() and clone(NS|PID) child processes) is around
15 milliseconds; subtantially greater than the overhead of
rsyscall. As namespaces are widely used, this suggests our
overhead is acceptable.

4.3 Usage in the real world

At Two Sigma we have used rsyscall and direct-style pro-
cess creation to implement an internal distributed system
deployment library, written in Python, which we’ll refer to
here as Toplevel. Toplevel is in use in production, and is ex-
tensively used as part of testing and development. Toplevel
consists of a collection of functions and modules for each
component in our system, which start up components using
direct-style process creation, all from a single Python parent
process.

One of the major benefits of direct-style process creation
has been easy use of file descriptor inheritance. Our experi-
ence has been that with fork-style or spawn-style interfaces,
file descriptor logic must ultimately be centralized, while with
direct-style, file descriptors in a new process can be built up
over time, simplifying the implementation. We’ve found that
even programmers without substantial prior experience with
Unix programming are able to use file descriptor passing as
a normal feature of their development process with relative
ease, writing code to support new programs and passing down
file descriptors to those programs without issue.

Easy file descriptor passing has, in turn, allowed us to heav-
ily use socket activation techniques to start up services in
parallel, substantially speeding up system startup [60]. We are
able to bootstrap connections over our internal shared mem-
ory transports over pre-created, passed-down file descriptors,
and our management interfaces listen on passed-down sock-
ets; this allows starting up services in parallel, rather than in
dependency order. Benchmarking a representative example
built with an old library and its equivalent built with Toplevel,
the old example took an average of 221 seconds to run, mostly
spent in system startup, while the new example takes an aver-
age of 16 seconds.

Easy file descriptor inheritance has also allowed us to treat
file descriptors as a uniform interface in Toplevel. We pass
around file descriptors freely inside Toplevel. This uniform
interface allows us to flexibly swap implementations between
in-process and out-of-process, allowing us to decide on a case-
by-case basis whether we prefer the flexibility of an in-process
Python implementation, or the performance of a native code
implementation running in a child process.

We’ve also made use of namespaces, chiefly user names-
paces and pid namespaces. For legacy applications which
directly start subprocesses, we prevent process leaking with a
pid namespace. This is part of a strategy of noninterference
and cleanup that ensures that multiple users of Toplevel can
coexist simultaneously on the same host, even if running the
same system.
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Toplevel also makes uses of other features of rsyscall
which are not covered in this paper, and will be covered in
future work. These include the ability to operate on remote
hosts through capabilities for remote processes, and the ability
to perform system calls in parallel across a pool of processes.
These have significant synergy with direct-style process cre-
ation in forming an overall powerful system.

All this has allowed us to run our systems in a much more
dynamic way than before. We can freely start up arbitrary
subsets of our systems on-demand, spread across one or more
hosts, for development, testing, or production, regardless of
the configuration of that host, without worrying about inter-
ference between instances, and without a dependency on any
external privileged services, such as container runtimes. This
has become a key part of our development workflow.

5 Related work

5.1 Direct-style process creation
Baumann (2019) briefly suggests cross-process operations as
a possible replacement for fork on Unix, positing many of
the same advantages we find in practice [7]. Our work, though
developed independently, is in many ways an elaboration on
and implementation of that idea.

As we discuss in section 1, some operating systems natively
have direct-style process creation. We are not aware of any
other instances of direct-style process creation in a Unix-like
environment.

The closest related work known to us is efforts to build
Unix compatibility environments on operating systems which
natively use direct-style process creation; examples include
Exokernel and Fuchsia [16] [38]. Such compatibility envi-
ronments could be bypassed to perform direct-style process
creation using the underlying primitives, but regular Unix
system calls could not be used to create new Unix processes
in a direct-style way in such an environment.

5.2 Remote system calls
Many Unix-based systems have features described as “remote
system calls”. Most such systems do not allow a single pro-
gram to manipulate multiple processes; rather, a program im-
plicitly makes system calls in a single remote process which
is distinct from the process the program’s code runs in. Those
systems that do allow manipulating multiple processes are
generally oriented towards debugging and introspection, and
are unsuitable for a general purpose system.

HTCondor [66] and Popcorn [5], among others, use system
call forwarding to implement migration between hosts in a
computing cluster. In these systems, processes can be live-
migrated between hosts; when this occurs, the system will
transparently forward IO-related system calls back to the
original host.

gvisor [70] and ViewOS [21], among others, use system
call interception as a means of virtualization. In these sys-
tems, system calls made in one process are intercepted and
forwarded to another process, which performs the specified
system call and returns the results back to the original process.

Many other systems have unusual system call invocation
patterns, such as enclave systems like SCONE [3] [56] or
systems for exception-less system calls like FlexSC [65]. In
these systems, for a variety of reasons, a system call in one
process is not evaluated by directly entering the kernel, but
instead is sent to some other process or thread to be evaluated,
and the results received from that process or thread.

A number of debugging or instrospection systems have the
ability to perform or monitor system calls in other processes,
typically using ptrace. Systems like gdb and CRIU retrieve
information about the target process by forcing it to call vari-
ous system calls to dump information. These systems typicaly
use ptrace, which can be used by a single ptracer process to
operate on multiple target processes at once. Unfortunately,
as discussed in section 3, multiple ptracer processes cannot
use ptrace on a single target process simultaneously, which
means only one of these systems can be used at a time.

5.3 Process capabilities

Many capability-oriented operating systems, such as KeyKOS
[10], seL4 [26], and others [39], have process capabilities
which allow one process to operate on another process. These
systems are our main inspiration for this work.

On several Unix systems, Capsicum [68] provides some-
thing called process descriptors, which is a file descriptor han-
dle for a process. A similar feature has been recently added
to Linux in the form of the pidfd API [14]. These notions
of process capability are quite limited, however; pidfds and
process descriptors only allow sending signals to a process or
waiting for its death, rather than exercising full control over
the process.

5.4 Capability-secure libc replacements

Capsicum [68] provides a set of system calls which can be
used to provide a capability-secure sandbox. Latter efforts [2],
including CloudABI [55] and WASI [12], developed this into
a partial or full replacement for a POSIX libc. Like all other
Unix libcs that we know of, these libc-replacements implicitly
make system calls on the current process, rather than using
an explicit process capability as rsyscall does.

PLASH [62] provides a spawn-style API, in the form of a
shell, to launch processes in a capability-secure environment.
PLASH, like all spawn-style APIs, abstracts over the native
Linux environment, and is therefore limited in what kind of
processes it can create.
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6 Future work

6.1 Other applications of rsyscall
rsyscall was not developed solely for the purpose of this
paper, and it has other uses unrelated to direct-style process
creation, such as asynchronous system calls, exceptionless
system calls [65], and cross-host operations, among others.
We are actively exploring such applications, as well as broad-
ening rsyscall’s language support.

6.2 Kernel support
rsyscall’s cross-process syscalls can be performed entirely
in userspace, which has substantial benefits for deployability
and flexibility. Nevertheless, direct support in the Linux kernel
for creating a stub process and performing syscalls in the
context of that process may provide efficiency benefits, as
well as reducing overall complexity.

Other aspects of our implementation would also be im-
proved by new features in the Linux kernel; one example is
discussed in section 3.2.

6.3 Portability to other Unix systems
Other non-Linux systems could adopt the techniques of this
paper to provide direct-style process creation. Currently, our
focus is on Linux, but others may wish to explore porting
these techniques to other operating systems.

6.4 Large scale open source usage
We would like to open source libraries built on top of direct-
style process creation. From our experience using such li-
braries, discussed in section 4.3, we believe this would make
it easier to develop complex systems involving processes.

7 Conclusions

We have introduced direct-style process creation on Linux
for the first time, through rsyscall. This style of process
creation is common on academic operating systems, but was
previously not usable on Linux. We’ve provided a number
of examples which demonstrate the usefulness of direct-style
process creation in section 2. Our current implementation
of rsyscall has excellent support for Python, works en-
tirely in userspace, and is immediately deployable on today’s
Linux systems. rsyscall is open source and available from
https://github.com/catern/rsyscall.

We’ve found that direct-style process creation is more ex-
pressive than fork-style and spawn-style, and even with an
unoptimized implementation, has acceptable performance.
We’ve used direct-style process creation successfully in pro-
duction at Two Sigma. Direct-style process creation is our

technique of choice for new applications involving process
management, including in container runtimes and distributed
systems. Future work can make direct-style process creation
more efficient and decrease the complexity of its implementa-
tion.

We hope that a better process creation mechanism will help
encourage more creative use of processes and the features
available in Linux. Though processes are a long-standing,
widespread feature, we believe there is still much to be learned
about how to use processes to their full potential.
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